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Interpretation of large-scale structures 
observed in a turbulent plane Couette flow 
Dimitrios V. Papavassiliou and Thomas J. Hanratty 
D e p a r t m e n t  of Chem ica l  Eng inee r i ng ,  Un ive rs i t y  of I l l ino is ,  Urbana ,  IL 

Large-f low structures, not observed in turbulent Poiseuitle f low, are found in direct 
numerical s imulat ions of turbulent Couette f low. Because these structures are persistent 
in space and t ime, an interpretat ion is presented which approximates them by a secondary 
f low. The asymmetry of the velocity profile is favorable to the formation of f low modules 
that fil l the whole channel. These modules can take the form of weak rotational inviscid roll 
cells. They affect the turbulence in such a way that they receive energy from the 
turbulence, contrary to the usual notion to an energy cascade from large-scale turbulence 
to small-scale turbulence. © 1997 by Elsevier Science Inc. 
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Introduction 

Plane Couette  flow in a fluid is caused by the motion of two 
parallel infinite planes in directions opposite to each other. It is 
the simplest shear field. There  is no mean  pressure gradient, and 
the driving force is a constant shear stress t ransmit ted through 
the fluid from one plane to the other. 

Plane Couet te  flow is attractive for developing theoretical 
models for turbulence and for hydrodynamic stability, because of 
the simplicity of the governing equations and the geometry (von 
Kfirmfin 1937; Chandrasekhar  1961; Monin and Yaglom 1971; 
Drazin and Reid 1981). Reports  of laboratory investigations, 
however, are scarce, because technical difficulties are encoun- 
tered in constructing an experimental system. The moving plane 
is usually a belt or a fluid interface, (Reichardt 1956; Robertson 
1959; Robertson and Johnson 1970; Leutheusser  and Chu 1971; 
Aydin and Leutheusser  1979, 1991; El Telbany and Reynolds 
1980, 1982), which deforms at high-Reynolds number.  Measure- 
ments of mean velocity, turbulence intensities, turbulent  shear 
stress, and skin-friction coefficient have been reported. 

Direct numerical  simulations (DNS) at low-Reynolds numbers 
have been exploited in several recent investigations to obtain 
more information about this flow field (Miyake et al. 1987; 
Lundbladh and Johansson 1991; Lee and Kim 1991; Papavassil- 
iou 1993; Bech et al. 1993; Bech and Andersson 1994; Kommi- 
naho et al. 1996). A common feature of these studies of turbulent 
Couette  flow is the observation in the xz-plane of streaks of high 
and low streamwise velocity in the central region of the channel, 
that are characterized by scales of the streamwise velocity fluctu- 
ations in the flow direction that  are much larger than those 
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found in turbulent  Poiseuille flow. In this paper, these are 
differentiated from the well-known structures in the viscous wall 
region by the use of the term "wall streaks." Lundbladh and 
Johansson determined the critical Reynolds number,  defined 
using one-half the distance between the planes and one-half the 
velocity difference. They studied a range of Re between 300 and 
1500 and found that  turbulence can be sustained for Re above 
375. A direct numerical simulation with a coarse grid at Re = 
750-1750 by Miyake et al. showed a spanwise variation of the 
correlation coefficient for the streamwise velocity fluctuations 
that suggests periodic structures. Lee and Kim presented results 
on the mean velocity, second-order velocity statistics, and the 
structure of turbulence. A 128 x 129 x 192 ( x , y , z )  grid in a 
47rh X 2h × (8/3)~rh computational box was used, where h = 170 
is the half-channel height in the wall units. Their  results suggest 
that the streaks are associated with elongated roll cells. The cells 
fill the entire channel and contribute about 30% to the total 
turbulent kinetic energy. Bech et al. used a 96 x 64 x 64 grid in a 
4"rrh × 2h x 27rh box, where h = 85 wall units. As did Lee and 
Kim, they observed the large-scale structures in the outer region 
of the flow. The effect of computational box size was investigated 
by Bech and Andersson. They found that an increase of the 
length of the box by a factor of 4 (384 x 64 x 64 grid points in a 
16~rh × 2h x 27rh box) made the large-scale structures more 
distinct; an increase of the width of the channel by a factor of 2 
showed large-scale structures that meander  in the flow field. 
Laboratory measurements  of the correlation coefficient of the 
streamwise velocity fluctuations at Re = 1300 by Bech et al. 
(1995) show a spanwise variation, which is consistent with the 
computer  simulations. 

The present paper  uses a simulation at Re = 2660 to examine 
the structures discovered by Lee and Kim (1991). Our viewpoint 
is that these can be treated as secondary flows, because they 
persist in both space and in time. Over most of the flow field, the 
secondary flow is found to be described by the equations for an 
inviscid rotational field; viscous and turbulent stresses are impor- 
tant close to the boundaries. 

Bradshaw (1987) distinguished two types of turbulent  sec- 
ondary flows. One, Prandtl 's  first kind, is generated by a redirec- 
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tion or skewing of spanwise vorticity to the streamwise direction. 
This vorticity is later diffused by Reynolds and viscous stresses. 
The other, Prandtl 's  second kind of secondary flow, occurs when 
streamwise mean vorticity is generated by Reynolds stresses. This 
is the case in rectangular ducts with boundaries  in the spanwise 
direction. A particular concern of this paper  is to determine how 
a secondary flow could be sustained in a channel without cor- 
ners. A consideration of the energy balance equations shows that 
secondary flows can exist in stationary turbulence if the small 
rate of dissipation, due to viscosity, is balanced with energy 
supplied by the turbulence. This interpretation is supported by 
calculating the Reynolds stresses with velocity data generated by 
the simulation. This result is of particular interest, because 
turbulence usually receives energy from the mean flow. The 
transfer energy from the turbulence implies a negative eddy- 
viscosity, which can be considered as a consequence of the fact 
that  a turbulent  stress component  ~i/ is related to all compo- 
nents of the rate of strain tensor and not just to  D i j  , for flows in 
which the average velocity is three-dimensional (3-D). 

Numerical procedures 

The computer  code used in this work is a modification of an 
algorithm developed by McLaughlin (see Lyons et al. 1991 and a 
thesis by Lyons 1989), which simulates fully developed turbulent  
flow in a channel. The fluid is Newtonian and incompressible, 
and it has constant physical properties. 

The simulation is carried out on a 128 x 65 x 128 grid in x, y, 
and z. The streamwise direction is x, the spanwise is z, and the 
direction perpendicular to the channel  walls is y. The dimensions 
of the computat ional  box are 4-rrh X 2h x 2rrh,  where h is the 
half-height of the channel. The flow is regarded as periodic in 
the streamwise and spanwise directions, with periodicity lengths 
equal to the size of the computat ional  box in these directions. 
No-slip boundary conditions are imposed at the rigid channel  

walls. The Navier-Stokes equations are integrated in time using 
the pseudospectral fractional step method developed by Orszag 
and Kells (1980) with a pressure field correction suggested by 
Marcus (1984). The velocity field is expanded in truncated Fourier 
series in the x-direction, the z-direction, and a truncated Cheby- 
shev polynomial series in the normal direction. The velocity field 
advances from time N to time N + 1 by three fractional steps. In 
the first fractional step, the nonlinear convective term is calcu- 
lated. The second fractional step calculates the dynamic pressure 
head, and the third fractional step solves for the viscous terms. 
The convective term is advanced in time by a second-order 
accurate  semi-implicit  A d a m s - B a s h f o r t h - C r a n k - N i c h o l s o n  
scheme; the largest contribution to the convection term 
U(OU/Ox) is treated implicitly using a Crank-Nicholson scheme, 
and the rest of the convective term is treated explicitly with an 
Adams-Bashfor th  scheme. The dynamic pressure term and the 
viscous term are advanced in time by a first-order accurate Euler 
scheme. The convective (nonlinear) term is evaluated in physical 
space and, thus, aliasing errors occur, which are reduced by using 
the two-thirds truncation rule. 

For the simulation of turbulent flow in a channel, it is 
convenient to use the wall variables, the kinematic viscosity v, 
and the friction velocity u*, to make the equations nondimen- 
sional. For plane channel flow, the Reynolds number  is intro- 
duced through the mean pressure gradient. In Couette flow, 
however, there is no mean pressure gradient, so the Reynolds 
number  is introduced in a different way. The equations for 
Couette flow were made nondimensional,  so that the half chan- 
nel height was h = 150, and the size of the computational box 
was 1900 x 300 x 950. The time-step used was 0.2 time units. The 
normalizing factors were different from the calculations for 
Poiseuille flow by a constant factor. 

In Couette flow, the walls are moving relative to each other. 
This is taken into account by changing the Dirichlet boundary 
conditions. For plane channel flow, the velocity vector is set to 
zero at the walls, while for Couette flow the streamwise velocity 

Notation 
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constants in log-law relation 
streamfunction amplitude 
rate of strain tensor 

substantial derivative 

constant defined as U w = + Gh 
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wavenumber  in the streamwise direction 
time iteration 

ensemble average of the pressure 
pressure fluctuation 
secondary pressure 
two times the turbulent  kinetic energy 
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Reynolds number  = - -  
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critical Reynolds number  - 

p 

time 

f r i c t i o n  v e l o c i t y  = ( _ ~ ) 1 / 2  

streamwise velocity of the walls of the Couette  
flow channel 
ensemble average of the i th component  of the 
velocity 
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fluctuating velocity components  in the x-, y-, z-di- 
rections 
secondary velocity components  in the x, y, z direc- 
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streamwise, normal, and spanwise coordinates 
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Xi 
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¢ 
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wavenumber  in the i th direction 
eddy-viscosity 
permutat ion index 
streak spacing in the wall region 
wavelength in the i th direction 
kinematic viscosity 
turbulent  stress tensor 
shear stress at the wall 
stream function 
vorticity component  in the i th direction 

Superscripts and subscripts 

m ) 
) 

)s 
)+ 

)w 

ensemble average 
average over the x, z directions and time 
value associated with the secondary flow 
value made dimensionless with the wall parame- 
ters 
value at the wall 
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at the wall Uw is given by 

Uw= ±Gh (1) 

where G is a constant (G = 0.11826), which specifies the Reynolds 
number of the simulated field. The choice of G is such that the 
dimensionless variables calculated in the code have values as 
close as possible to their values in wall units. The top wall of the 
channel moves in the minus x-direction, and the bottom wall 
moves in the positive x-direction. The Reynolds number Re, 
defined as Re = (U,,h/~), is 2660; this is much higher than the 
critical value for plane Couette flow. The experiments of Re- 
ichardt (1956) give Re c = 750. The more recent studies by Aydin 
and Leutheusser (1991) and by Tillmark and Alfredsson (1992) 
report values of 300 and 360 + 10, respectively. 

The code was run in two stages. The initial trial stage was on 
a coarse grid (16 × 33 × 64). When a stationary state was success- 
fully reached, the runs for the second stage were started on a 
fine grid. 

The initial velocity field, which was used to start the simula- 
tion, was a Poiseuille flow velocity field at stationary state. The 
top half of the profile was selected to be a turbulent Poiseuille 
flow and the bottom half, the mirror image of the top. This 
profile gives a velocity at the bottom of the channel equal to the 
maximum of the turbulent Poiseuille mean velocity. The fluctuat- 
ing velocity field adjusted to this mean velocity profile in about 
100 time units for both the coarse and the fine grids. After 2000 
time units, the flow field reached a stationary state that was 
identified when both the second-order statistics of the flow and 
the mean kinetic energy balance converged. The simulation was 
continued for another 2250 time units to acquire meaningful 
statistics of the flow. The characteristic velocity was found to be 
1.04748u* in the intrinsic units chosen for the simulation. Thus, 
the half-channel height in wall units is h += 157. 

The coarse grid simulation and the transient state of the fine 
grid simulation were run on one processor of a CRAY-2 super- 
computer up to 10,000 time-steps; the latter required about 150 
CPU hours. The stationary state results were acquired on one 
processor of a CONVEX C3880 supercomputer and required 
about 220 CPU hours for 11250 time iterations. 

The resolution of the calculations presented in this paper is 
the same as used in previous studies of turbulent flow in a 
channel (Lyons et al. 1991). The numerical accuracy of these 
simulations was verified by a comparison with laboratory mea- 
surements at the same conditions (Niederschulte 1989). 

R e s u l t s  

Velocity measurements  

Mean velocities are plotted in Figure 1 in semilogarithmic coor- 
dinates. The abscissa is the distance from the wall made dimen- 
sionless with wall coordinates. The ordinate is the absolute value 
of the difference between the velocities of the wall and the fluid. 
The velocity profile is asymmetric about the centerline of the 
channel; only one half of this profile is shown. A logarithmic 
relation extends from y + =  40 to y + =  260, a distance of about 
220 wall units. It is described by the relation 

~ - =  2.301n y+ + 5.25 (2) 

Lee and Kim (1991) obtained values of 2.31 and 5.8 for the 
constants in the above equation. Results from different investiga- 
tions are summarized in Table 1. 

Calculated values of the dimensionless root-mean-square of 
the three components of the velocity fluctuations are presented 
as the solid curves in Figure 2. The calculations of Lee and Kim 
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(1991) are represented by the dashed curves. The datapoints are 
laboratory measurements. Good agreement is observed with 
measurements and with the calculations of Lee and Kim. Calcu- 
lations of the Reynolds stress and the total stress are presented 
in Figure 3. 

The kinetic energy of the turbulence per unit mass is given as 
q2/2, where q2 = u/2. The energy balance is given by Hinze (1987) 
a s  

d U  
- -  U U - -  - -  i 

dy Oy Oy -----£ + ~ Oxj ] = 0 

(3) 

where all terms have been made dimensionless with the friction 
velocity and the kinematic viscosity. The first term represents the 
production; the second, the transport by turbulence; the third, 
the work done by pressure fluctuations; and the fourth, the 
viscous diffusion. The last term, the dissipation of turbulent 
energy, is strictly applicable to a homogeneous field. A complete 
consideration of both homogeneous and nonhomogeneous terms 
in the exact formulation of the energy dissipation shows that the 
error involved in using Equation 3 is negligible (Papavassiliou 
1993). A plot of the terms in Equation 3 is given in Figure 4. 
There is is a slight net transfer of energy from the inner flow to 
the log-layer due to the turbulent transport and the pressure 
work. However, the production and dissipation are roughly equal 
to one another in the log-layer. 

The spatial correlation coefficients of the three velocity com- 
ponents at the center of the channel, in the direction of the flow, 
are shown in Figure 5. As has already been noted, the length 
scale of the streamwise velocity fluctuations in the streamwise 
direction is much larger than what is observed in turbulent 
Poiseuille flow. Correlation coefficients, at the center of the 
channel, in the spanwise direction are given in Figure 6. A 

Table 1 Reported values for the logarithmic law constants 
(U+=A In y++B)  

Investigator A B 

Reichardt (1956) 2.48 5.5 
Leutheusser and Chu (1971 ) 2.49 6.0 
Robertson and Johnson (1970) 2.43 5.6 
El Telbany and Reynolds (1982) 2.55 5.2 
Aydin and Leutheusser (1991 ) 2.5 5.5 
Lee and Kim (1991) 2.31 5.8 
Present work 2.30 5.26 
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periodicity is noted for the streamwise and normal components.  

F l o w  p a t t e r n s  

Figure 7a is a typical instantaneous velocity field in a cross 
section perpendicular to the direction of the mean flow, at 
x = 29.7. The arrows represent  the projection of the fluctuating 
velocity vectors on the plane. The velocity scale is presented in 

s e p a r a t i o n  a t  t h e  c e n t e r  o f  t h e  c h a n n e l  
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Figure 6 Two-point  corre la t ion coefficient  wi th  s p a n w i s e  
s e p a r a t i o n  a t  t h e  c e n t e r  o f  t h e  c h a n n e l  

the upper  right corner of the figure. The dimensions of the figure 
are in simulation units; the results can be converted to wall units 
by a multiplication with u*/v = 1.04748. The bottom wall is 
moving from the reader to the paper plane; the top wall is 
moving in the opposite direction. Eddies exist not only in the 
region close to the wall but also in the center region. Roll cells 
cannot  be identified in this single realization. However, if all 
vectors with positive velocities in the y-direction are plotted (as 
in Figure 7b) flow structures which fill the whole channel are 
observed. Figure 8a is a top view of a plane at the center of the 
channel. 

The same velocity field realization is used for both Figure 7 
and Figure 8. Only the positive streamwise velocity fluctuations 
are presented, so the blank portions of the figure correspond to 
regions where the streamwise velocity fluctuations are negative. 
These are two positive streamwise velocity streaks in Figure 8, 
extending from one end of the channel to the other. The streaks 
are not perfectly straight, but they are not interrupted all the way 
through the channel, even though there are regions in the 
streaks where the streamwise component  of the velocity is small 
compared to the spanwise component.  After a stationary state is 
reached, these streaks show up at the same spanwise location in 
the xz-plane at the center of the channel for all times studied. 
Figure 8c shows vectors with positive velocity components in the 
normal direction; the streaky structure is not so evident. As 
would be expected, no streamwise streaks are evident in a plot of 
positive spanwise fluctuations at the center of the channel (Fig- 
ure 8b). 
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f i g u r e  7 a) Typical yz-plane of Coue t te  flow at  s t a t ionary  s ta te ;  b) v > 0 f luc tua t ions  only 

To reveal the persistent structure in the yz-plane, averages in 
the streamwise direction, over the whole channel  length, were 
obtained. Figure 9 presents the average of results from 17 
realizations of the velocity flow field, covering a time span of 
2150 time units. The small-scale structures close to the wall are 
filtered out in the averaging; the pat tern that  survives is a set of 
roll cells that  fill the entire channel  and have a spanwise width of 
about 250 wall units. The locations of these rolls were the same 
for averages over t ime intervals of 2100-3400 and 3400-4250. 
These flow structures are equivalent to the k x = 0 mode identi- 
fied by Lee and Kim (1991). Figure 10a and 10b show the 
conditionally averaged velocity fields for a Couette  flow and for a 
Poiseuille flow (in the yz-plane) with the condition of large 
positive streamwise velocities at y = 150 and z = 950. The t__rigger 
level is selected so as to capture 50% of the measured u 2. The 
cellular structure seen in the Couette  flow is not  evident in the 
Poiseuille flow, which uses a velocity scale which is 2 / 7  of that  
characterizing Figure 9b. 

Figure 11 shows velocity fields that  are conditionally averaged 
so as to capture 60% of the Reynolds stress contributed by 
second quadrant  events for the Poiseuille flow and by first 
quadrant  events for a Couet te  flow at y = 11.4. A well-defined, 
conditionally averaged cell with a width of about  50 wall units is 
obtained for the Poiseuille flow (Figure l la ) .  This is consistent 
with the observation in a number  of previous investigations that 
vortices of this size are controlling turbulence production in the 
viscous wall region. The velocity field for a Couette  flow (Figure 
l lb) ,  seems to result from a combination of the roll cells shown 
in Figure 9a and wall vortices with a size of about 50 wall units. 

Lee and Kim (1991) reported that  the large-scale structures 
existed even when the length of the computational box was 

1024hat. They suggested that the box should be longer than the 
viscous wall region streaks (about 1000 wall units), and the 
spanwise extent should include two pairs of roll-cells. It should 
be noted that Lee and Kim used an initial velocity profile 
different from that used in the present study and a spatial 
resolution about two times finer. They started their simulation 
with a linear mean velocity profile with imposed finite amplitude 
random disturbances. Lee and Kim report that the amount  of 
kinetic energy associated with the k x = 0 mode is about 30% of 
the total turbulent  kinetic energy; this is about 25% for the 
present simulation. 

Approximation of large structures by a secondary f low 

The results shown in Figures 7-11 suggest that it might be useful 
to consider that  the streaks in the mean velocity at the center of 
the channel  are associated with a secondary flow that is part  of 
the mean velocity vector. The total velocity vector U can be 
decomposed as 

U = U +  u (4) 

where U is the ensemble average of the velocity, and u is the 
fluctuation. The components  of the ensemble average velocity 
vector are 

, )  (5) 

where ( U )  is the average velocity over the x, z-directions and 
time, and the superscript s denotes velocity components  associ- 
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b) positive spanwise velocity fluctuation events; c) positive normal velocity fluctuation events 

ated with the secondary flow. Component  ( U )  is a function of 
the distance from the wall y, while u s, L, ~, and w 5 are functions 
of both y and z. 

The above approach is reasonable, because the roll cells were 
found to be persistent both in time and in space. The convection 
velocity of the large-scale structures at the center region of the 
channel is found to be zero (Papavassiliou 1993), which indicates 
that the roll cells are stationary and are not convected down- 
stream. Furthermore,  as shown in Figure 12, the viscous wall 
region of the Couette  flow exhibits well defined X += 100 wall 

streaks only when the velocity fluctuations are defined as in 
Equation 4. 

For the experiments reported in this paper, u s, 1: s, and w ~ 
were obtained by averaging over the length of the channel for 17 
realizations of the velocity field. Figure 13 presents the spanwise 
average of the root-mean-square values of the secondary flow 
velocity components.  Figure 14 presents the spanwise average of 
the intensities of the velocity fluctuations. The secondary flow is 
weaker than the turbulence, as is suggested by the smaller scale 
for the vectors in Figure 9a than for the vectors in Figure 7a. The 
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rms of the normal component of the secondary flow velocity is 
about 35% of the corresponding normal turbulent velocity com- 
ponent at the center of the channel; it becomes much smaller 
closer to the wall. The rms of w s is about 25% of the rms of w in 
the region close to the wall and about 5% of the rms of w at the 
center of the channel. The rms of u s is about 70% of that for u 
at the center region of the channel. Because u s and v s are 
persistent and in phase, the rather weak secondary flow makes a 

large contributions to the transfer of x-momentum in the chan- 
nel. Figure 15 shows the relative contribution of the secondary 
flow, expressed as (uS, v s ) ,  and of turbulence, expressed as the 
Reynolds stress, to the total convective transport of x-momen- 
tum, which is ((u s + u) (v  s + v ) ) .  The brackets indicate averages 
in x, z, and time. In the core region of the channel, the 
secondary flow contributes about 40% of the total convective 
transport of x-momentum. 
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Figure 10 yz-plane of condit ionally averaged velocity field wi th  50% of u > 0 events at the center of the channel; a) Poiseuille 
f low; b) Couette f low 
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Description of the secondary flow 

Govem/ng equations 

The momentum equation and the continuity equation for the 
ensemble average velocity at stationary state are given in wall 
units by (Hinze 1987) 

_o~ oP o2~ Ouiuj 

U] O x j  O x i  ...I- O x ~  O x j  
(6) 

- -  ~ 0  

Ox i 
(7) 

where fi is the ensemble average of the pressure, and the 
summation convention is applied. Velocity component U// is con- 
sidered to be the sum of an average value in the x, z-directions 
and a secondary flow component (Equation 5). Note now that the 
continuity equation gives 

OU s OW s 
- - - F  
Oy Oz 

= 0  (8) 

because OU,/Ox = 0. Thus a streamfunction + associated with 
the secondary flow can be defined as 

o~, o¢  
v + w + (9) 

Oz ay 

The kinetic energy equation for the mean flow is obtained by 
multiplying Equation 6 by ~ :  

1 0 U i 2 ~  . OUilgiu j c3Oii _ O P  r~ _ [  c)U i oUj  ] 

2 Oxj Oxj Oxj Ox i Ox i ] 

Oxi Oxj Ox i ] 
(lo) 

where, again, all variables are made dimensionless with wall 
parameters. 

The mean vorticity transport equation can be obtained by 
taking the curl of Equation 6. The resulting equation for the 
stationary state is (Speziale 1982) 

__ c)~) i c)~i i 0 2 ~  02~)i  

u,77x,  . . . . . .  + OXj e tJk  OXj OX m OX 2 
(11) 
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where e i j  k is the permutation index, and ~i is the ensemble 
average of the vorticity in the /-direction. The term on the 
left-hand side of Equation 11 corresponds to the convective 
transfer of average vorticity due to the average flow. The first 
term on the right side of Equation 11 gives the stretching, tilting, 
and twisting of the vorticity vector components in the/-direction. 
The second term is a source term that corresponds to vorticity 
generation by the turbulence. The last term represents viscous 
diffusion of vorticity. The components of the average vorticity 
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Figure 13 rms values of the secondary f low components of 
velocity in wall units 

vector in the present case are 

- = , - -  ( 1 2 )  

(~x 'a)Y'~z)  = Oy Oz Oz ' Oy ] 

The mean streamwise vorticity associated with the secondary 
flow is expressed as 

~x = - V 2 ~  (13) 

where q~ is defined by Equation 9. 
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Mean  streamwise vorticity and streamfunct ion 1 

A numerical evaluation of the terms of the momentum equation 
shows that  the secondary flow is inviscid and not affected by g 0.8 
turbulent  stresses or viscous diffusion in the central region of the 
channel. The viscous terms become important  only for y < 35. > ~ 0.6 
The wavy pattern of the secondary flow velocity in the spanwise '~ 
direction, which was reported by Lee and Kim (1991) and con- 

co 

firmed in this study, along with the observation that  the flow is 8 0.4 
inviscid suggests that  the secondary flow pattern is rotational and 
described by kinematic Equat ion 13. Momentum Equation 6 ~ 02 
then gives the pressure field associated with the secondary flow. 
Contours of x-vorticity (not presented here) confirm that the 
secondary flow is rotational. 0 

From Equation 11 the transport  equation for N~ is o 

U s 
O~)X_FwSC~x = ( 02 0 2 ) ~ +  02(v2-w2)  

Oy Oz OZ 2 Oy 2 Oy Oz 

Figure 15 

i i i i , , , , , , , , 

50 100 150 
y+ 

Relative cont r ibut ion  of secondary  flow and  tur- 
bulence to the convective transport of x-momentum in wall 
units 

02~x 02~x 
+ T  + -  Oz 2 (14) 

The secondary flow is directly related to ~x, as is evident from 
Figure 9a, and the magnitude of ~ is a measure of the strength 
of the secondary flow. Terms that represent tilting of y-vorticity 
in the x-direction and twisting of z-vorticity in the x-direction do 
not appear  in Equat ion 14, because they cancel each other. The 
only source terms are the turbulence terms. Speziale (1982) 
showed that these terms are responsible for the creation of 
secondary flows in noncircular ducts and developed a criterion 
for the appearance of secondary flows based on this argument. In 
the case of plane Couette flow, the turbulence terms are small. 
The viscous terms are important  only close to the wall; they are 
responsible for the transfer of vorticity in and out of the field at 
the walls. In the core region of the channel, convection terms are 
dominant.  They transfer t ~  around each roll cell. Neglecting the 
turbulence and viscous dissipation terms, Equation 14 takes the 
form 

- -0  (15) 
Dt 

clearly not represented by a uniform ~x- Another  possibility is 

020 02~ 
- -  + - -  - -  ~ 2 0  ( 1 7 )  
Oy 2 Oz 2 

This is the well-known reduced wave equation, the Helmholtz 
equation, or the membrane equation, where c~ is interpreted as a 
real wavenumber and 0 as the displacement of a vibrating elastic 
membrane.  Equation 17 also describes the B6nard cells that 
result from a thermal instability (Drazin and Reid 1981). The 
general solution of Equation 15 is 

0 = C COS(O~yy)CoS(~ z z) (18) 

where C is a constant, a2 = a~. + c~2z, 2"rr/oty is the wavelength in 
the y-direction and 2 ~ r / a  z is the wavelength in the z-direction. 
Figure 17a shows the contours of the secondary flow streamfunc- 
tion 0, evaluated from the simulation data. It shows that the 
z-dimension of the computational box accommodates two wave- 
lengths h z and the height of the channel half-wavelength hy in 
the y-direction. Thus, values of ay and c% can be estimated as 

for the center region of the channel. The implication of the 
above is that the x-vorticity associated with a fluid particle is 
constant in the center region of the channel; for a stationary 
flow, lines of constant ~x coincide with lines of constant 0, 
because fluid particles follow the streamlines. 

In the center region of the channel, the change in the value of 
~ in the y-direction is small. Figure 16 presents values of t~ x 
averaged over y = 5 0 -  250 as a function of z. The same figure 
shows the average value of the streamfunction 0 of the sec- 
ondary flow, supporting the argument that Nx has the same 
pattern as the streamfunction. 

Batchelor (1967) discussed cases for which Equation 15 holds. 
Because Nx is constant over a streamline, it can be written as a 
function of 0 and Equation 13 becomes 

020 020 ) 
~ x = -  - - + - -  =f(O) (16) Oy 2 OZ 2 

Once f ( 0 )  is known, a solution for the streamfunction 0 can be 
found. One case is a uniform vorticity in the flow (Batchelor 
1956), where f ( 0 )  = tOo = const. The flow under  consideration is 

Xy = 2(2h)  = (4h)  

2'IT "IT 

X>. 2h 
0.01047 (19) 
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Figure 16 x-vorticity and streamfunction averaged in the 
center of the channel (y---- 50-250) 
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2"rrh 
h z "rrh 

2 

2~r 2 
a~ 0.01333 

h z h 
(20) 

From Figure 17a, it is found that the amplitude of ~ is repre- 
sented by C = 40 and that  ~ has its maximum at z - - 4 5 .  From 
these results and Equation 18, the following relationship is 
derived: 

= 4 0 c o s ( a y y ) C o s [ e L z ( z  - 45)] (21) 

with O/_y and az  given by Equations 19 and 20, respectively. 
Figure 17b presents the construction of the streamfunction ¢ 
using Equat ion 21. This is to be compared with the measure- 
ments  in Figure 17a. 

From Equations 16 and 17 

~x = or2 ~ -  (22) 

Using results at the peaks in Figure 16 a value of a2 = 0 .01/32 
= 3.13 10 -4 is obtained. Using the calculated values of ~Xy and 
(x z to evaluate (x, we get Or. 2 2 2 = Ot.y + Or. z = 2.87 10 4. The two 
values are very close considering that  the data are not perfect; 

averages over a much larger time span might be necessary in 
order to see perfect roll cells. 

Equat ion 21 is a good representat ion of the secondary flow in 
the core region of the channel, where the assumption of inviscid 
flow holds. There is a boundary layer close to th~ wall, where 
viscosity effects are significant. Figure 18 presents w s averaged 
over half of a roll cell. At  the center of the channel, w ~ is zero. 
As the distance from the center of the roll cell increases the 
magnitude of w s also increases until it reaches a maximum at 
y = 35. Close to the wall w ~ decreases rapidly toward zero on the 
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wall. Furthermore, it is found that ~x changes sign at y = 35 
indicating the existence of a viscous region for y < 35. 

Kinetic energy equation for secondary f low 

An important issue is how the secondary flow is sustained. The 
kinetic energy equation for the secondary flow needs to be 
considered. From Equations 10 and 5, the y-component of the 
secondary flow kinetic energy is defined by 

l ( ov'zv s OvS2w s ) Ov'v -~ auS"~ 70v*  7~0 vs 

7 7y + g + Ty + - oz -Y;-z 

 I..i  ws)] 
Oy Oy~ ~ - y / + - ~ z  t ~ ~zz + O~- 

(o.s 2 o.(o. t 
- 2  ~-y ] - ~-z 0--~ - + ~y ] 

and the z-component, by 

(23) 

-21( Ows2v'- --Ow'2wS + - -  + - -  Ow'w-~oz OW'oy _ - ~  Ow'__Oz 

OiwiO. oto  t = _w s OP s + + - -  + 

(oW.oy _oy + 
(24) 

where pS is used instead of fi to denote the ensemble average of 
the pressure, which is associated with the secondary flow. It is 
noted that because of the assumption of homogeneity in the flow 
direction, the streamwise velocities ( U )  and u ~ do not appear in 
Equations 21 and 22. 

The first four terms in each equation represent the transport 
of secondary flow kinetic energy by the secondary flow and by 
the fluctuations. They are terms that convect energy around the 
field without consuming or producing it. The last two terms on 
the left-hand sides are sources or sinks. They transfer energy 
between the secondary motion and the turbulence and are the 
only possible sources of energy. Thus, these equations suggest 
that the net contribution from these terms must be positive for a 
stationary secondary flow to exist. The pressure terms redis- 
tribute energy between the y- and z-components. Work done by 
the viscous stresses acting on the secondary flow is represented 
by the next two terms. The last two terms represent the viscous 
dissipation of the secondary flow kinetic energy. Because the 
convection and diffusion terms conserve kinetic energy and the 
dissipation consumes it, the terms that represent the supply of 
energy to the secondary flow are associated with the interchange 
of energy between fluctuations and the secondary motion. Thus, 
the energy balance equation suggests that a secondary flow can 
be sustained if the dissipation of the secondary flow by viscosity 
is balanced by energy supplied to the secondary flow by turbu- 
lence. 

Figure 19 presents these terms averaged over z; ~(OwS/Oz) 
and -dw(Ow~/ay) have positive values close to the wall, change 
sign farther away and finally go to zero at the center of the 
channel, which is expected, because w s is zero there. On the 
other hand, -~(Ov'/Oy) is negative close to the wall and ap- 
proaches zero at the center of the channel, while b-~(Ov'/O~) is 
positive throughout the channel. Equations 23 and 24 show that 
a positive sign for these terms means that they are sources of 

kinetic energy (because they behave opposite to dissipation), and 
a negative sign means that they are sinks of kinetic energy. Thus, 
Fd(Oc, S/Oy) extracts energy from the secondary velocity gradient 
and feeds it to the turbulence and ~(OvS/Oz) transfers energy 
from the turbulence to the secondary flow. The integrals of the 
different terms, presented in Figure 19, over the whole extent of 
the channel (twice that shown) give the values shown. The net 
effect is a supply of kinetic energy to the secondary motion. 
Term -~(dvS/dz) is seen to be the major factor in transferring 
energy from the turbulence to the secondary flow. 

Figure 20a presents a quadrant analysis o f - ~ ( O v ' / O z )  at 
y = 73, where the maximum occurs. The points in the figure form 
a cloud around a 45 ° line through quadrants three and one, 
indicating that, most of the time, OvS/Oz and vw are either both 
negative or both positive. The same behavior is exhibited by 
OwS/Oy and vw in the region close to the wall, as is shown in 
Figure 20c. Figures 20a and 20c are the opposite of what is 
usually found for the relation between Reynolds stresses and 
corresponding average velocity gradients. Figure 20b presents a 
quadrant analysis of -{-~(Ow'/Oy) at y = 50. The cloud of points 
mostly occupies quadrants two and four; where Ow'/ay and vw 
have opposite signs. 

An eddy-viscosity e associated with vw can be defined as 
- - U W  = 2e:D23. Multiplication of both sides of this relation by 

D23 gives 

- ~ + - -  =,~ - - +  
Oy az Oy ] 

(25) 

where the left-hand side is the sum of two terms, discussed above 
and presented in Figure 19. It follows from Equation 25 that 
when ~(OvS/Oz + Ow'~/Oy) is positive on average, as is found to 
be the case for y < 35, the eddy-viscosity is negative. Similarly, 
the eddy-viscosity associated with ww is negative for y < 40. 
These results suggest that, in (3-D) mean flows, the use of 
Newtonian concepts to represent turbulent stresses requires the 
recognition that stresses are related to all components of the rate 
of strain tensor (Hinze 1987). Thus, - b-w=f(D23, D22, D33) and 
not just of D23 , as would be the case for an isotropic medium. 

The mechanism governing the transfer kinetic energy from 
the fluctuations to the secondary flow is, therefore, different 
from what is usually found in flows that are approximately 
unidirectional. The common situation is that, on average, kinetic 
energy is extracted from the mean flow by the turbulence through 
the Reynolds stresses. In the present case, the secondary motion 

0.0o, T ' \  I 

/ \/ . . . . . . . . .  I 
,. - -  I 

0.0005 \ o.024sx2 . . . . .  ww*~v'/'~z ] 
-0.0158,2 '.. / \ / . .  .......... / .............. - ...................... . 

°...~... - . "*"~ ................... 

8 
. .C._ . . . ~  . -  

4).0005 
0 50 100 150 

Y 

Figure 19 Terms of the secondary f low y and z kinetic 
energy equations, which show the interchange of kinetic 
energy between f luctuat ions and secondary motion, aver- 
aged over z 
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Figure 20 Q u a d r a n t  ana lys i s  of sou rce / s ink  t e r m s  of the  
s e c o n d a r y  f l o w  k i ne t i c  e n e r g y  e q u a t i o n s ;  a) q u a d r a n t  ana l y -  
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a n a l y s i s  o f  ~ O w J O y )  at t h e  l oca t i on  o f  i ts m i n i m u m ;  c) 
q u a d r a n t  a n a l y s i s  of  ~OwS/Oy)  at t h e  l oca t i on  of  i ts max i -  

m u m  

affects the turbulence and modulates the Reynolds stresses in a 
way that  they can cause a supply of energy to the secondary flow. 
Thus, small scales of motion supply kinetic energy to larger 
scales, contrary to the usual notions of an energy cascade. 

The net kinetic energy supplied to the secondary flow in one 
unit of time is calculated to be less than 0.001 of the total 
secondary flow kinetic energy; it is balanced by the viscous 
dissipation close to the walls (y < 15), mainly through (3wS/Oy) 2. 
Once the roll cells are established, it seems that a very small 
amount  of energy is needed to sustain them. 

Kinetic energy equation for the streamwise velocity 

The spanwise average of the streamwise kinetic energy defined 
by Equat ion 8 has two terms, because 

<U2> = (U> 2 + (u ' 2 )  (26) 

Separate equations for ( U )  2 and u '2 are obtained by using the 
statistical theorem that  the average of a sum is the sum of the 
averages and by applying the Reynolds averaging assumption to 
the secondary flow: 

(o~j >= o<*>oxj (27) 

Equat ion 27 has been justified empirically. For example, zero 
values of (OuS/Oy), (Ov~/Oy), (Ow'/Oy) are obtained from the 
computer  simulation for all values of y. 

The following equation is then derived from Equation 4: 

O ( U i >  0 2  ( U / >  o 3 < u ~ >  0 < ~ >  

(Uj) Ox~ Ox~ Oxj Oxj (28) 

A kinetic energy equation for (U/) is obtained by multiplying 
Equat ion 26 by (U  i). The streamwise component  of this equation 
gives 

d < U > < u ' v ' >  d<U><~> s ,, d<U> <u~>d<U> 
+ <u . 

dy dy dy 

. / (.<u>12 = ) -  j (29) 

A spanwise averaged kinetic energy equation for u~ is obtained 
by subtracting the kinetic energy equation for (U/) from the 
spanwise average of Equation 8. The streamwise component  of 
this equation gives 

1 d(uS2)v s d(uSu{> (uSvS) d<U) + - -  + - -  
dy 2 dy dy 

\ oy)\ oz) 
I 

dy \ Oy \ ~ Oy ] / \ ~, Oz ] [ 
(30) 

The term (uSv s) (d<U)/dy) appearing both in Equations 27 and 
in 28 is a sink for ( U )  kinetic energy and source for u s kinetic 
energy. There is, thus, a transfer of energy from ( U )  to u s. Term 
( ~ )  (d(U)/dy) in Equation 29 is a sink that represents a 
transfer of ( U )  energy to the u-turbulence. Energy from u s is 
transferred to u-turbulence, through the terms (~(Ou'/Oy)) 
and (-d--w(OuS/Oz)). The modification of the Reynolds stresses by 
the secondary flow allows a transfer of energy from the turbu- 
lence to v s and w" energy. Thus, Equation 29 shows that energy 
transferred to the flow field through the work done by moving 
the walls (which is obta ined  by integrat ing the term 
(d/dy)((U)(d(U)/dy)) over the y-domain) does not go directly 
to the secondary flow, but takes the indirect path pictured in 
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Figure 21. Here, the first line represents the net effect of 
Equation 27 and the second line, the net effect of Equation 28. 
What is not indicated in this pictorial representation is the 
feedback whereby v s and w ~ result in the production of u s 
energy and the modification of v-turbulence and w-turbulence so 
as to produce nonzero values of v w ,  and u w  and variations of 
u 2, v 2, w 2 in the z-direction. These modifications allow a transfer 
of energy from the v-turbulence and w-turbulence to the sec- 
ondary flow, as indicated in Figure 21. 

Conclusions and discussion 

Interpretat ion of  the large-f low structures 

Computational studies of turbulent Couette flow have revealed a 
strongly streaky structure (Figure 8a) in the streamwise velocity 
component in the core region that is not observed in a turbulent 
Poiseuille flow. This finding has been confirmed in studies con- 
ducted with different initial conditions, different lengths of the 
computational domain, and different numerical methods. Lee 
and Kim (1991) used a box which was 2135 + long, 340 + high, 
and 1425 + wide and discovered contributions to the kinetic 
energy and to the Reynolds stress by roll cells extending over the 
whole length of the box ( k  x = 0 mode). Papavassiliou (1993) 
confirmed these results and showed that the roll cells do not 
change significantly for times as large as 2000 + units or about 
one turnover time (in a box that is 1900 + long, 300 + high, and 
950 + wide). 

It is expected that these streaks would be observed to mean- 
der if a large enough box were used. Nevertheless, they are 
persistent enough in space and in time that it is attractive to 
consider them as associated with eddy structures that may be 
approximated as secondary flows in order to provide an interpre- 
tation. The spanwise and normal velocities of this secondary flow 
are small. However, because of their persistence, they can make 
significant contributions to the transport of momentum and can 

produce organized spanwise variations of the streamwise velocity 
(observed as a streaky structure). 

Calculations of the terms in the momentum equations de- 
scribing the secondary flow reveal that the viscous and turbulent 
stresses are important for y < 35. In the core region, the sec- 
ondary flow is rotational and inviscid, so that lines of constant 
vorticity coincide with the streamlines. It is shown that the 
streamfunction of the secondary motion in the core of the 
channel is described by the reduced wave equation and a solu- 
tion of this equation, which agrees well with the calculated values 
of the streamfunction has been found. The walls of the channel 
create a boundary layer for the spanwise average velocity. Here, 
viscous effects cannot be ignored. 

Couette flow differs from Poiseuille flow in that the velocity 
profile is asymmetric. In the Couette system, considered in this 
paper, flows outward from the bottom wall that extract energy 
from the mean flow (a quadrant one event), continue to do so 
when they move past the center line of the channel. The opposite 
is true for turbulent Poiseuille flow. Consequently, conditions are 
favorable for the enhancement of turbulent structures that ex- 
tend from wall to wall. 

For these structures to develop into roll cells, they must affect 
the turbulence in a special way. The secondary flow introduces 
new Reynolds stresses and creates a nonhomogeneous field in 
the spanwise direction. The computations show that Reynolds 
stresses defined with reference to the 3-D flow are associated 
with a net transfer of energy to the secondary flow. This is an 
example of Prandtl's second kind of secondary flow (Bradshaw 
1987), a stress-induced pattern. 

Conditions for existence 

Results presently available suggest that the existence and the 
properties of the large-flow structures could depend on the 
Reynolds number and the box dimensions. The total energy of 
the secondary flow is obtained by adding the z-averaged Equa- 

Work done 
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u' energy 

====• [ Creates <U> energy [ 

[ u-turbulence 

[ ~ ]Viscous Dissipation 

u' energy ] 

Viscous Dissipation 

u-turbulence 
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tions 23 and 24 to Equation 30 

10(u~2u~) O(u~u--i~j) 

2 Oxj Oxj 

__ouT)  , , o<u~> 
uiu j -  + Oxj ( u i u j )  ~xj 

= - \  ,ox,/+ - - . ,  ÷ Oxj Oxj Ox i 

/ou  ou_; l l 
\ oxj axj oxj l / (31) 

The Reynolds number enters through the boundary conditions, 
the specification of (U) ,  and the turbulence properties. We 
could expect that there is a minimum Reynolds number for 
which Equation 31 can be satisfied. Furthermore, the properties 
of the secondary flow should be defined by a consideration of 
Equations 23, 24, 30, and 31. This will require an understanding 
of Reynolds stresses in a 3-D flow. 

More genera l  impl icat ions 

The results presented in this paper could have more general 
implications in considering turbulent flows. Firstly, Figures 11 
and 12 show that the properties of the wall vortices depend on 
outer flow structures that scale with the dimensions of the 
system. This, then, raises concerns as to whether all aspects of 
the near-wall flow will scale with the wall parameters, friction 
velocity, and kinematic viscosity. 

The mechanism of energy transfer used to interpret the 
large-scale structures implies that a reverse energy cascade is 
possible in turbulent flows. Even if the secondary flow structures 
observed in this study would meander  in a much wider and a 
much longer flow field, the finding that kinetic energy is supplied 
to larger scales of motion by smaller eddies will be important in 
understanding their behavior. Questions that remain unanswered 
are the following: What are the conditions for the existence of 
these secondary flows? What governs their properties? and What 
starts them? 
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